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Abstract: The public-key cryptography provides answers to all the problems of key managements 

and digital signatures. Its algorithms are based on mathematical functions rather than on substitution 

and permutation. The mathematical trick of this scheme is that it is relatively easy to compute 

exponents compared to computing discrete logarithms. The purpose of the algorithm is to enable two 

users to exchange a key securely that can then be used for subsequent encryption of messages. The 

algorithm itself is limited to the exchange of the keys. 
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INTRODUCTION: 

The development of public-key cryptography is the greatest and perhaps the only true 

revolution in the entire history of cryptography. The public-key cryptography provides answers to all 

the problems of key managements and digital signatures. Its algorithms are based on mathematical 

functions rather than on substitution and permutation. More important public-key cryptography is 

asymmetric involving the use of two separate keys, in contrast to symmetric conventional encryption 

which uses only one key. The use of two keys has profound consequences in the area of 

confidentiality, key distribution and authentication. 

We describe well known public-key cryptosystems namely Diffie-Hellman Key Exchange 

Scheme, El Gamal, Messey - Omura Cryptosystem and Paillier Cryptosystems. Before that we define 

informally the primitive root of a prime number. 

Definition: g is a primitive root of a prime number p if the numbers g mod p, g
2
 mod p……….g

p-l
 

mod p are distinct and consists of the integers from 1 through p -1 in some permutation.  

Diffie - Heilman Key Exchange: 

The first published public-key algorithm appeared in the seminar paper by Diffie and Heilman 

that defined public-key cryptography and is generally referred to as Diffie - Heilman Key exchange. 

The mathematical trick of this scheme is that it is relatively easy to compute exponents compared to 

computing discrete logarithms. The purpose of the algorithm is to enable two users to exchange a key 

securely that can then be used for subsequent encryption of messages. The algorithm itself is limited 

to the exchange of the keys. 

The Diffie - Heilman key exchange scheme works as follows. Alice and Bob wish to agree on 

a common, secret key, and then can communicate only over an insecure channel. First they agree on a 

large prime number p and an integer g which is a primitive root of p. The prime p and a primitive root 

g can be publicly known. Hence, Bob and Alice can use their insecure communication channel for this 

agreement. 

Now Alice chooses a random integer a < p. She computes      A = g
a
 mod p and sends the 

result A to Bob, but she keeps the exponent a secret. 

Bob chooses independently integer b < p randomly. He computes  B = g
b
 mod p and sends the 

result to Alice. He also keeps his exponent b secret. To obtain the common secret key, Alice computes 

B
a
 mod p = g

ab
 mod p and Bob computes 

A
b
 mod p = g

ab
 mod p 



International Journal of IT & Knowledge Management (ISSN: 0973-4414) 

July-Dec 2008, Vol 1, Number-2, pp 578-588 
 
 

Page | 579 

 

Therefore their common key is k = g
ab

 mod p. 

Diffie-Hellman Key exchange Scheme on other groups. 

A secure and efficient Diffie - Heilman key exchange scheme can be implemented in all 

cyclic groups in which the Diffie - Heilman problem is difficult to solve and for which the group 

operations can be efficiently implemented. Here we only describe how the implementation of the 

Diffie - Heilman protocol in such groups works in principle. 

Alice and Bob agree on a finite cyclic group G and a generator g of G. Let n be the order of G. Alice 

chooses randomly an integer a ∈{1,2,………n-1}. She computes A = g
a
 and sends the result A to Bob. 

Bob chooses randomly an integer b ∈{1, 2, n-1}. He computes B = g
b
 and sends the result B to Alice. 

Alice determines B
a
 = g

ab
 and Bob determines A

b
 = g

ab
  

The common secret key is K = g
ab

  

El Gamal Cryptosystem: 

The El Gamal Cryptosystem was introduced by El Gamal [ 19 ] in 1985 and is based on the 

hardness of finding the discrete logarithm. The message space is defined by a cyclic group, for which 

the discrete logarithm problem is hard. Typical choices are Zp (P is large safe prime) or Zn (n is a RSA 

modulus). The algorithm for key generation, encryption and decryption is as follows. 

Key Generation: Choose a group G of order p (e.g. Zp), with p a safe prime and a generator g for this 

group. 

Choose a random x from Zp and compute h = g
x
 mod p. 

 Public – Key PK = (G, g, p, h) 

Private Key SK = x 

 

Encryption: Convert M into element of G, MG chooses an r random from Zp as the blinding factor 

and compute the cipher text pair. 

C1 = g
r
 mod p and C2 = MG . h

r
 mod p 

Decryption: Compute C2 (C1
x
)

-1
 mod p  

= MG h
r
 g

-xr
 modp   

= MG g
xr

 g
-xr

 mod p  

= MG mod p 

= MG 

Using the extended Euclidean algorithm to find the multiplicative inverse and convert back to 

the original message M. 

 

Messey-Omura Cryptosystem: 

This cryptosystem is also based on the difficulty of finding discrete logarithms. All the users 

have agreed upon a public prime p. Now each user A chooses two positives integers eA and dA such 

that eA dA mod p =1 

In contrast with RSA cryptosystem, in this system the users keep both the numbers secret, 

publishing neither of them. Now consider the situation in which the user A sends the message m to the 

user B. We assume that a number represents the message, which is less than p. 
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The algorithms work as follows. 

 The user A computes m
eA

 mod p and sends to the user B. 

 The user B computes the eB
th

 power of the number he has received and return the result m
eAeB

 

mod p to the user A. 

 Now the user A applies his number dA to what he received and gets m
eAeBdA

 mod p. This 

number turns out to be m
eB

 mod p. The user A sends this result to the user B. 

 The user B applies dB to the received number and obtains the message m. 

 Paillier Cryptosystem: 

The Paillier cryptosystem was introduced by Paillier [ 20 ] in 1999, based on the nth 

Residuosity class problem. The algorithm for key generation, encryption and decryption is as follows. 

Define the function L (x) = x-1 / N 

Key Generation: Select two large primes p and q and compute N = pq and  = lcm (p-1, q-1). 

Select a base g  
*

2N
Z  and check 

  2Gcd L g mod N , N 1   in order to make sure that N divides the order of g. 

Public-Key PK = (g, N) 

Private Key SK =   

Encryption: Select a random r  ZN  

C = g
m
 r

N
 mod N

2
 

Decryption: 

 
 

2

2

L C mod N
m mod N

L g mod N




  

In this paper  we present our new variants of Diffie-Hellman key exchange scheme, El Gamal 

cryptosystem, Messey-Omura cryptosystem and Paillier Schemes based on Jordan Totient function 

and explained these algorithms with simple examples. We analyze the significance and complexity of 

the above schemes. 

Variant of Diffie-Hellman Key Exchange Scheme based on Jk (N). 

This scheme is described as follows. 

Alice and Bob wish to agree on a common secret key. They can communicate only over an 

insecure channel. 

First, they agree on two positive integers N and K such that 1 < K < N and 

Compute    K K

K
P N

J N N 1 1 P    

Consider       J N J N J NK K k
Z , ,x a   

commutative ring with unity as a message space. 
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They select a generator  J NK
g Z  and their  

Public-Key 
    kJ NK

PK Z ,J N ,g  

Alice Bob 

Alice choose an integer x randomly and keep 

it secret. 

Encryption : 

CA  = g
x
 mod Jk (N) 

    = xg mod Jk (N) Sends  

Sends CA to Bob 

Message Verification : 

mA  = 
x

BC mod Jk (N) 

    = x CB mod Jk (N) 

    = x yg mod Jk (N) 

 

Bob choose an integer y randomly and keep it 

secret. 

Encryption : 

CB  = g
y
 mod Jk (N) 

    = yg mod Jk (N) 

Sends CB to Alice 

Message Verification : 

mB  = 
y

AC  mod Jk (N) 

    = y CA mod Jk (N) 

    = y x g mod Jk (N) 

    = x y g mod Jk (N) 

∴          ∴  mA = mB  

∴ The common secret Key Sk  = g
xy

 mod Jk (N) 

                              = xyg mod Jk (N) 

Example:. Let N =7, K=2 :  

 JK (N) = J2 (7) = 7
2
-1 = 79-1 = 48 

∴  (Z48, +48, X48) is a commutative ring with unity of order 48 is a message space.  

 Consider g = 5  Z48 

 Public – Key PK = (Z48, 48, 5) 

Alice Bob 

Secret Key x = 50 

Encryption : 

CA  = g
x
 mod Jk (N) 

    = xg mod Jk (N)  

    = 50 x 5 mod 48 

    = 250 mod 48 

    = 10  

Sends CA = 10 to Bob 

Message Verification : 

mA  = 
x

BC mod Jk (N) 

    = x CB mod Jk (N) 

Secret Key y = 60 

Encryption : 

CB  = g
y
 mod Jk (N) 

     = yg mod Jk (N) 

     = 60 x 5 mod 48 

     = 300 mod 48 

     = 12 

Sends CB = 12 to Alice 

Message Verification : 

mB  = 
y

AC  mod Jk (N) 

    = y CA mod Jk (N) 
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    = 50 x 12 mod 48 

    = 600 mod 48 

    = 24 

    = 60 x 10 mod 48 

    = 600 mod 48 

    = 24 

∴  Their common secret key is 24 

 

Variant of El Gamal Cryptosystem based on Jk (N) : 

Choose two positive integers N and K such that 1 < K < N and 

Compute    k k

p N
Jk N N 1 1 p    

Consider 
      X

K KJ N ,K
Z J N , J N a

Commutative ring with unity as a message space. Choose a 

generator  J NK
g Z  and compute 

h = g
x
 mod Jk (N) = xg mod Jk (N) 

Public – Key PK = 
    KJ N ,K

Z J N ,g,h   

Private Key SK = x 

Encryption: 

Choose a random r from  J NK
Z as the blinding factor. 

Cipher text pair C1 = g
r
 mod Jk (N) = rg mod Jk (N) 

C2 = (M+h
r
) mod Jk (N) = (M+rh) mod Jk (N)  

Decryption:  

 Compute     
1

X

2 1 kC C modJ N


  

      r xr

kM h g modJ N    

      xr xr

kM g g modJ N    

        kM xr g xr g modJ N     

        kM xr g xr g modJ N     

   kMmodJ N  

  =M 

Example  

 Choose N=7, K = 2 

 Jk (N) = Jk (7) = 7
2
-1 = 49-1=48 
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Consider  48 48 48Z , ,X  a commutative ring with unit of order 48 as a message space  

 Choose a generator g = 5 

 Select a Select a secret key x = 11 

 Find h = g mod Jk (N)  

  = xg mod Jk (N) 

  = 11 x 5 mod 48 

  = 55 mod 48 

  = 7  

 Public – Key PK = (Z48, 48, 5, 7) 

Encryption:  

Choose M = 10 ∈ Z48 

Choose a random r from Z48 let it be 40 

i.e. r = 40  

Cipher text pair C1 = g
r
 mod Jk (N) 

                  = rg mod Jk (N) 

         = 40 x 5 mod 48 

   = 200 mod 48 

   = 8 

C1 = { M+h
r
) mod Jk (N) 

                 = { 10 +rh } mod 48 

         = { 10+40x7 } mod 48 

   = 290 mod 48 

   = 2 

Decryption:  

Compute     
1

X

2 1 kC C modJ N


  

    1112 (8 mod 48


   

 112 8 mod48   

  2 11 8 mod48    

86mod48   

10  

M  

Variant of Messey-Omura Cryptosystem Cryptosystem based on Jk (N) : 
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In this cryptosystem all the users have agreed upon a public-prime p computers Jk (p) = (p
k
 – 

1) and consider       X

J P P PK KK
Z , J , J

 a commutative ring with unity as a message space. 

Convert the message into the elements of  J P
K

Z . 

Now each user choose two positive integers e and d such that ed ≡ 1 mod Jk (p) 

In contrast with RSA cryptosystem, in the system the user keeps both the numbers secret, 

publishing neither of them.  

Consider the situation in which the user Alice sends the message m belongs to  J PK
Z  to the 

user Bob. The algorithm works as follows. 

 The user Alice computes  eA
KW m modJ p  

=  A ke mmodJ p  

And sends to the user Bob. 

The use Bob computers  eB
KX W modJ p  

   B ke WmodJ p  

   B A ke e mmodJ p  and 

Returns to the user Alice.  

Now the user  Alice applies his number dA to that he received and gets. 

 dA
KY X modJ p  

 A Kd mmodJ p  

 A B A Kd e e mmodJ p  

   A A B Ke d e mmodJ p  

 B Ke m modJ p . Now Alice sends this result to the user Bob.  

 

 

 The user Bob applies dB to the recovered number Y and computes  db
kY y modJ p  

 B kd ymodJ p  

 B B ke d mmodJ p  

 kmmodJ p  m.  

Example :  

Let P =7, k = 2 

JK(p)=J2 (7) = 7
2
-1 = 49-1=48 

 Consider  48, 48 48Z ,X  a commutative ring with unity as a message space. Let m = 10 ∈ 

Z48 

Alice Bob 

Selects eA, dA such that Selects eB, dB such that 
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eA dA ≡ (mod 48) 

Suppose Alice selects 

eA = 5,  dA = 29 

Computes W = m
e
A mod 48 

              = eA m mod 48 

             = 5.10 mod 48 

             =2 

Alice sends W to Bob  

Computes Y = X
d

A mod 48 

             = dAx mod 48 

             = 29 x14 mod 48 

            = 406 mod 48 

            = 22 

Alice sends y to Bob 

eB dB ≡ 1 (mod 48) 

Suppose Alice selects 

EB = 7,  dB = 7 

Computes X = w
eB

 mod 48 

             = eB W mod 48 

             = 7.2 mod 48 

             = 14 

Bob sends X to Alice  

Computers Z = Y
d

B mod 48 

           = dBy mod 48 

           = 7 x22 mod 48 

           = 154 mod 48 

           = 10 

 

Variant of Paillier Cryptosystem based on Jk (N)  

 Choose two positive integers N and K, where 1<K<N Compute Jk (N) 

 Consider       X

J N N NK KK
Z , J , J

 a 

Commutative ring with unity as a message space.  

Consider function  
 kx mod J N

L x
r

  

 Where r is random belongs to  J NK
Z  

Select a generator  J NK
g Z such that gcd (g, Jk (N)) = 1 

Select d such that gd ≡ 1 mod Jk (N) 

Public –Key PK =     kJ NK
Z ,J N ,g,r  

Private Key SK =     kJ NK
Z ,J N ,g,d  

 

 

Encryption:  

C = g
m
 r mod Jk (N), where m is the message belongs to  J NK

Z  

Decryption:  

  
   m

k kdcmod J N dg r modJ n
L dc

r r
   

  = d m g mod Jk (N) 

  = d g m mod Jk (N) 
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  = g d m mod Jk (N) 

= 1 m mod Jk (N) 

= m 

Example :  

      Let P =7, k = 2 

JK(p)=J2 (7) = 7
2
-1 = 49-1=48 

 Consider  48, 48 48Z ,X  a commutative ring with unity as a message space.  

  
 kx mod J N

L x
r

  

  Where r is a random belongs to Z48 

 Let r = 4 

Select g ∈ Z48 such that (g, Jk (N)) = (g, 48) = 1 

∴ (5, 48) = 1               ∴ take g = 5 

Select d such that gd ≡ mod Jk (N) 

     5d ≡ 1 mod 48 

   5 x 29 ≡ 1 mod 48 

   ∴ Take d = 29 

Public Key PK = (Z48, 48, 5, 4) 

Private Key SK = (Z48, 48, 29) 

Take a message m = 3 ∈ Z48  

Encryption:  

 C  = g
m 

r mod Jk (N) 

  = m g r mod Jk (N) 

  = (3 x 5 x 4) mod 48 

  = 60 mod 48 

  = 12 

 

Decryption:  

   
 kdcmod J N

L dc
r

  

   
29 12mod 48

4


  

12

4
 = 3 = m 

Remarks: This cryptosystem works when N is a product of two primes. In this case we can easily 

calculate e and d such that  ed ≡ 1 mod Jk (N). 
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 SIGNIFICANCE AND COMPLEXITY OF OUR DEVELOPED SCHEMES: 

Our Developed Schemes have the following significance features. 

1) All our schemes provide strong security but are also practicable. 

2) The encryption algorithms of T.E1 Gamal Scheme and Paillier Schemes are one way 

functions unless, some trap door function is given, we cannot decrypt the plaintext from the 

ciphertext. So the schemes are very much secure and intractable.  

3)  Since we have taken 
      J N J N J NK K K

Z , ,x a  commutative ring with unity as a message 

space we can use both the operations  J NK
  and  J NK

x  in these cryptosystems. 

4) Since k is a positive integer such that 1 < k < N, therefore k is our choice. By choosing 

appropriate k we can make the message space as large as possible. If we assign numerical 

equivalents to the alphabets randomly from this message space, certainly it is very difficult to 

recover the plaintext from the cipher text. So all the above systems are very much secure and 

complex. 
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